References
For reviews on synthesis of heterocycles, see:
<A NAME="RU32104ST-1A">1a</A>
Krchnak V.
Holladay MW.
Chem. Rev.
2002,
102:
61
<A NAME="RU32104ST-1B">1b</A>
Franzen RG.
J. Comb. Chem.
2000,
2:
195
<A NAME="RU32104ST-1C">1c</A>
Horton DA.
Bourne GT.
Smythe ML.
Chem. Rev.
2003,
103:
893
For recent studies on synthesis of aryl hydrazines and their derivatives, see:
<A NAME="RU32104ST-2A">2a</A>
Wang Z.
Skerlj RT.
Bridger GJ.
Tetrahedron Lett.
1999,
40:
3543
<A NAME="RU32104ST-2B">2b</A>
Wagaw S.
Yang HB.
Buchwald SL.
J. Am. Chem. Soc.
1998,
120:
6621
<A NAME="RU32104ST-2C">2c</A>
Hartwig JF.
Angew. Chem. Int. Ed.
1998,
37:
2090
<A NAME="RU32104ST-2D">2d</A>
Demers JP.
Klaubert DH.
Tetrahedron Lett.
1987,
28:
4933
<A NAME="RU32104ST-3">3</A> On the biological activity of indoles, see:
Sunberg RJ.
Indoles
Academic Press;
London:
1996. and references therein
<A NAME="RU32104ST-4">4</A>
Haddad N.
Baron J.
Tetrahedron Lett.
2002,
43:
2171 ; and references therein
<A NAME="RU32104ST-5">5</A>
Hunsberger IM.
Shaw ER.
Fugger J.
Ketcham R.
Lednicer D.
J. Org. Chem.
1956,
21:
394
<A NAME="RU32104ST-6">6</A>
Brown DW.
Mahon MF.
Ninan A.
Sainsbury M.
Shertzer HG.
Tetrahedron
1993,
49:
8919
<A NAME="RU32104ST-7">7</A> For a review on sulfonylhydroxylamine, see:
Tamura Y.
Minamikawa J.
Ikeda M.
Synthesis
1977,
1
For synthesis of sulfonylhydroxylamine, see:
<A NAME="RU32104ST-8A">8a</A>
Glover EE.
Rowbottom KT.
J. Chem. Soc., Perkin Trans. 1
1976,
367
<A NAME="RU32104ST-8B">8b</A>
Batori S.
Timari G.
Koczka I.
Hermecz I.
Bioorg. Med. Chem. Lett.
1996,
6:
1507
<A NAME="RU32104ST-8C">8c</A>
Greck C.
Bischoff L.
Girard A.
Hajicek J.
Genet JP.
Bull. Soc. Chim. Fr.
1994,
131:
429
<A NAME="RU32104ST-9">9</A> Explosion in attempting to dry O-mesitylenesulfonyl-hydroxylamine has been reported, see:
Scopes DIC.
Kluge AF.
Edwards JA.
J. Org. Chem.
1977,
42:
376
For solid-supported reagent, see:
<A NAME="RU32104ST-10A">10a</A>
Booth RJ.
Hodges JC.
Acc. Chem. Res.
1999,
32:
18
<A NAME="RU32104ST-10B">10b</A>
Parlow JJ.
Devraj RV.
South MS.
Curr. Opin. Chem. Biol.
1999,
3:
320
<A NAME="RU32104ST-10C">10c</A>
Thompson LA.
Curr. Opin. Chem. Biol.
2000,
4:
324
<A NAME="RU32104ST-10D">10d</A>
Ley SV.
Baxendale IR.
Bream RN.
Jackson PS.
Leach AG.
Longbottom DA.
Nesi M.
Scott JS.
Storer RI.
Taylor SJ.
J. Chem. Soc., Perkin Trans. 1
2000,
3815
<A NAME="RU32104ST-10E">10e</A>
Guillier F.
Orain D.
Bradley M.
Chem. Rev.
2000,
100:
2091
<A NAME="RU32104ST-11A">11a</A>
Portoghese PS.
Sultana M.
Nagase H.
Takemori AE.
J. Med. Chem.
1988,
31:
281
<A NAME="RU32104ST-11B">11b</A>
Portoghese PS.
Sultana M.
Takemori AE.
J. Med. Chem.
1990,
33:
1714
<A NAME="RU32104ST-12">12</A>
Procedure for the Preparation of 7.
To a mixture of PS-TsCl (Argonout, 1.97 mmol/g, 2.0 g, 3.9 mmol) and N-Boc-hydroxylamine (1.05 g, 7.9 mmol) in THF (32 mL) was added THF solution (4 mL)
of Et3N (1.1 mL, 7.9 mmol) slowly at 0 °C. The mixture was shaken for 1.5 h at r.t. After
filtration of the mixture, the resulting resin was washed with THF, H2O, and THF, and dried in vacuo to give resin-supported N-Boc sulfonyl hydroxylamine 7 (2.6 g). IR (resin): 1475, 1396, 1173 cm-1. Anal. Found: C, 68.78; H, 7.40; N, 2.22; Cl, 0.02; S, 5.52%.
<A NAME="RU32104ST-13">13</A>
The ratio was estimated by 1H NMR measurement of the crude mixture.
<A NAME="RU32104ST-14">14</A>
Typical Experimental Procedure.
To resin-supported N-Boc sulfonyl hydroxylamine (7, 100 mg), TFA (1 mL, pre-cooled at 0 °C) was added at r.t., and the mixture was shaken
for 1 min at r.t. After filtration of the mixture, the resulting resin was washed
with H2O, THF, and CH2Cl2 (pre-cooled at 0 °C) to give the polystyrene-supported sulfonyl hydroxylamine 1B. The resulting resin was used for next amination without drying. To the resulting
resin 1B was added aniline (27 µL, 0.29 mmol) in CH2Cl2 (0.5 mL, pre-cooled at 0 °C), and the mixture was shaken for 10 min at r.t. After
filtration of the mixture followed by washing with CH2Cl2, the resulting resin were treated with CH2Cl2-HCl (10 M) in MeOH (1:1), filtered, and then washed with CH2Cl2-HCl (10 M) in MeOH (1:1). The combined filtrates were evaporated, and dried in vacuo
to give of crude phenylhydrazine HCl (17.1 mg). Further purification was achieved
by silica gel column chromatography followed by adding 10 M HCl in MeOH to give phenylhydrazine
HCl (4.0 mg, 28 µmol).
<A NAME="RU32104ST-15">15</A>
Robinson R.
The Fischer Indole Synthesis
Wiley-Interscience;
New York:
1982.
<A NAME="RU32104ST-16A">16a</A>
Tanaka H.
Ohno H.
Kawamura K.
Ohtake A.
Nagase H.
Takahashi T.
Org. Lett.
2003,
5:
1159
<A NAME="RU32104ST-16B">16b</A>
Ohno H.
Tanaka H.
Takahashi T.
Synlett
2004,
508
<A NAME="RU32104ST-17">17</A>
The lower yield than previously reported
[16a]
was due to the different ways of estimation of the yield. The yield was determined
by measurement of mass weight of cleavage product in the former paper, on the other
hand in this paper the yield is isolated yield.
<A NAME="RU32104ST-18">18</A>
Spectra of 8d: 1H NMR (400 MHz, CD3OD): δ = 0.13-0.23 (2 H, m), 0.52-0.61 (2 H, m), 0.93 (1 H, m), 1.30 (3 H, t, J = 7.6 Hz), 1.72 (1 H, d, J = 12.2 Hz), 2.28-2.50 (4 H, m), 2.56 (1 H, d, J = 15.9 Hz), 2.73 (1 H, d, J = 15.9 Hz), 2.73-2.90 (4 H, m), 3.17 (1 H, d, J = 18.6 Hz), 3.40 (1 H, d, J = 6.3 Hz), 5.59 (1 H, s), 6.53 (1 H, d, J = 8.1 Hz), 6.56 (1 H, d, J = 8.1 Hz), 7.00 (1 H, d, J = 1.7 Hz), 7.34 (1 H, d, J = 1.7 Hz). 13C NMR (150.8 MHz, CD3OD): δ = 4.2, 4.8, 10.3, 14.6, 24.1, 25.1, 29.8, 32.8, 45.0, 60.4, 63.4, 74.4, 85.7,
111.1, 113.0, 118.2, 119.6, 119.7, 124.4, 126.0, 129.3, 130.2, 131.8, 131.9, 135.8,
140.8, 144.5. MS (ESI): 521 [M + H]+.
Spectra of 8e: 1H NMR (400 MHz, CD3OD): δ = 0.13-0.22 (2 H, m), 0.51-0.60 (2 H, m), 0.93 (1 H, m), 1.73 (1 H, d, J = 12.5 Hz), 2.28-2.47 (4 H, m), 2.49 (3 H, s), 2.57 (1 H, d, J = 15.9 Hz), 2.68-2.85 (2 H, m), 2.76 (1 H, d, J = 15.9 Hz), 3.17 (1 H, d, J = 18.6 Hz), 3.40 (1 H, d, J = 6.3 Hz), 5.59 (1 H, s), 6.52 (1 H, d, J = 8.1 Hz), 6.55 (1 H, d, J = 8.1 Hz), 6.90 (1 H, d, J = 8.4 Hz), 7.16 (1 H, d, J = 8.4 Hz). 13C NMR (150.8 MHz, CD3OD): δ = 4.2, 4.8, 10.3, 14.1, 24.1, 29.8, 32.7, 45.0, 60.4, 63.5, 74.4, 85.8, 111.8,
117.8, 118.2, 119.3, 119.6, 120.9, 125.9, 126.2, 128.4, 131.5, 131.9, 138.5, 140.8,
144.5. MS (ESI): 463 [M + H]+.
Spectra of 8f: 1H NMR (400 MHz, CD3OD): δ = 0.15-0.24 (2 H, m), 0.52-0.62 (2 H, m), 0.95 (1 H, m), 1.26-1.42 (18 H, m),
1.74 (1 H, m), 2.35-2.49 (4 H, m), 2.71-2.81 (3 H, m), 3.18-3.26 (2 H, m), 3.36 (1
H, d, J = 6.3 Hz), 5.61 (1 H, s), 6.53 (1 H, d, J = 8.2 Hz), 6.56 (1 H, d, J = 8.2 Hz), 7.05 (1 H, d, J = 1.7 Hz), 7.20 (1 H, d, J = 1.7 Hz). 13C NMR (150.8 MHz, CD3OD): δ = 4.3, 4.7, 10.3, 24.2, 31.9, 32.2, 33.0, 35.6, 36.3, 36.5, 44.9, 48.0, 60.5,
63.9, 75.0, 86.6, 107.0, 108.9, 115.2, 118.2, 119.5, 122.6, 125.9, 130.9, 132.1, 140.1,
140.8, 144.3, 144.8, 145.1. MS (ESI): 527 [M + H]+.
Spectra of 8g: 1H NMR (400 MHz, CD3OD): δ = 0.15-0.24 (2 H, m), 0.52-0.61 (2 H, m), 0.94 (1 H, m), 1.73 (1 H, m), 1.81-1.91
(4 H, m), 2.31-2.49 (4 H, m), 2.59 (1 H, d, J = 15.9 Hz), 2.75-2.87 (7 H, m), 3.17 (1 H, d, J = 18.6 Hz), 3.41 (1 H, d, J = 5.9 Hz), 5.60 (1 H, s), 6.52 (1 H, d, J = 8.2 Hz), 6.54 (1 H, d, J = 8.2 Hz), 6.67 (1 H, d, J = 8.1 Hz), 7.10 (1 H, d, J = 8.1 Hz). 13C NMR (150.8 MHz, CD3OD): δ = 4.2, 4.8, 10.2, 24.2, 24.2, 24.9, 25.4, 30.0, 30.6, 32.7, 45.0, 49.9, 60.4,
63.5, 74.4, 86.3, 116.7, 118.1, 119.4, 120.4, 121.5, 125.3, 125.9, 129.5, 131.3, 132.1,
137.7, 140.8, 144.5, 150.4. MS (ESI): 469 [M + H]+.
Spectra of 8h: 1H NMR (400 MHz, CD3OD): δ = 0.12-0.22 (2 H, m), 0.49-0.60 (2 H, m), 0.92 (1 H, m), 1.75 (1 H, d, J = 12.7 Hz), 2.27-2.46 (4 H, m), 2.66 (1 H, d, J = 15.6 Hz), 2.71-2.76 (1 H, m), 2.83 (1 H, d, J = 18.6 Hz), 2.84 (1 H, d, J = 15.9 Hz), 3.17 (1 H, d, J = 18.6 Hz), 3.42 (1 H, d, J = 6.3 Hz), 5.68 (1 H, s), 6.54 (1 H, d, J = 8.2 Hz), 6.57 (1 H, d, J = 8.2 Hz), 7.45-7.49 (1 H, m), 7.51-7.55 (1 H, m), 7.58 (1 H, s), 8.19-8.23 (2 H,
m). 13C NMR (150.8 MHz, CD3OD): δ = 4.2, 4.7, 10.2, 24.1, 29.7, 32.7, 44.8, 60.3, 63.3, 74.4, 85.7, 112.6, 118.0,
119.5, 119.7, 121.7, 122.8, 123.5, 123.9, 125.3, 125.8, 125.9, 126.8, 128.2, 129.9,
131.7, 132.3, 140.6, 144.4. MS (ESI): 499 [M + H]+.
Spectra of 8i: 1H NMR (400 MHz, CD3OD): δ = 0.12-0.24 (2 H, m), 0.51-0.62 (2 H, m), 0.87-0.97 (1 H, m), 1.73-1.76 (1
H, m), 2.28-2.50 (4 H, m), 2.63 (1 H, d, J = 14.6 Hz), 2.72-2.88 (2 H, m), 2.81 (1 H, d, J = 15.6 Hz), 3.18 (1 H, d, J = 18.6 Hz), 3.42 (1 H, d, J = 6.6 Hz), 3.81 (1 H, d, J = 22.0 Hz), 3.90 (1 H, d, J = 21.7 Hz), 5.63 (1 H, s), 6.54 (1 H, d, J = 8.1 Hz), 6.56 (1 H, d, J = 8.1 Hz), 7.15-7.19 (1 H, m), 7.26-7.30 (1 H, m), 7.31 (1 H, d, J = 8.1 Hz), 7.41 (1 H, d, J = 8.3 Hz), 7.46 (1 H, d, J = 7.3 Hz), 7.68 (1 H, d, J = 7.6 Hz). 13C NMR (150.8 MHz, CD3OD): δ = 4.2, 4.8, 10.3, 24.2, 30.1, 32.7, 35.2, 45.0, 60.4, 63.5, 74.4, 86.1, 112.2,
112.4, 118.2, 118.5, 119.6, 119.8, 125.6, 126.0, 126.1, 126.5, 127.4, 127.6, 131.0,
132.1, 135.5, 137.8, 140.9, 143.5, 144.4, 144.6. MS (ESI): 503 [M + H]+.